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The  case is tha t  of planar  f low on running water  into a dry channel .  

There  are several  papers on this  [1-7] ,  in which e i ther  no a l l owance  
is made  for res is tance  of the  bed, or the form is appropr ia te  t o s t e a d y -  

s ta te  even flow, which is assumed to  apply  also to t ransient  uneven  
flow. The  flow is essen t ia l ly  of t ransient  type  in  the  present (dam-  
break) case.  
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Fig. 1 

The problem is here considered numer ica l ly ,  with a l lowance  for 
the  t r ans i en t - s t a t e  effects considered in  [8]. 

1. APPROXIMATE FRICTIONAL STRESS AT THE BOTTOM NEAR THE 
FRONT 

We use the  equations for a p lanar  open flow [8] 

Ou Ou~ Our . Oh / \  + 

t O't Ou Ov 
+ T 0--)-, 0-7 + N-y = 0 .  (1.1) 

subject  to the  condit ions 

Oh Oh 
�9 ~ 0 ,  -~-  @ u-~-x = v for y=:h(t,x), 

u - - 0 ,  v = 0  for y = 0 .  (1.2) 

Here t is t ime ,  (x, y) is a car tes ian  coordinate  sys tem (x axis a long 
the  f ixed r ec t i l i nea r  contour), u and v are the  components  of the 

ve loc i ty  a long x and y, p is pressure, and p and u are  the  densi ty  and 
k i n e m a t i c  viscosi ty  respec t ive ly  [8]. 

Function r is found from add i t iona l  considerations;  in par t icular ,  

r is a known function of t, x, and y in w 

Condit ions (1.2) are for in tegra t ion  of (1.1) with respect to  y from 

0 t o h .  

Here we assume that  h(t, x) and u(t, x, y) may  be discontinuous. 

The  problem then  has to be  considered by rep lac ing  the d i f fe ren t ia l  
equations by in tegra l  ones which is done as follows. 

Let x = ~(t) be  some l ine  in  the  (x, t)  plane.  We perform the fol-  

lowing t ransformations of the independent  var iables:  9~ = x - ~(t), 

~z = t, 93 = y. Then the  first equat ion of (1.1), with (1.2), may  be 
put as 

h 

Az = -- ~ udOa, 
0 

h h 

A~=--~" udOs-~ u~dOa+g-~-cosao, ~ ' - - " ~ 2  . ( 1 .3 )  
0 0 

Here r 0 is the  stress on the bed, y is the  contour of the region, 

0 -< Oz* ~ ~ ,  - 9 i  -< 9v:, -< ~1. Let ftinctions u and h be suf f ic ien t ly  

smooth everywhere  excep t  on the  l i n e  ~ = 0 in  the p lane  of ~i and 

~z, whi le  on tha t  l i ne  they  have  a discont inui ty  of the first kind. 
Then d i f ferent ia t ion  of (1.3) with respect  to 8 z gives  

8, 
!~ To r 

- -  l 

Here M r is the sum of the  m e a n  values of the in tegra l  Al(91, , 5z) 

in  the ranges -91  ~ 9t .  -< 0, 0 - 81. -< 9 I. We assume the mstr ic t ions 

I u l < o o  ( 0 ~  h < o o ) ,  I 
oq M 1  

and in t roduce  the  symbol  

l rq~o 
l ira - -  --p- dO, = C (t%). (1.5) 
Oz "-~'0 , 

Then Eq. (1.4) with 9 z --~ 0 gives  

h- h- 

i ufldOs--~" i u dOa+g'-~"cOS~o= 
0 0 

~§ 
hSu+M,s__~.,Su_d,~s.{_ h" = g'~-eosao-t-C . (1.6) 
0 0 

Here u+, h+ and u_, h_ are the  l i m R i n g  values  of u and h as 51 
tends to zero from left  and right respect ive ly .  

S imi la r ly ,  we get  from the second equat ions in (1.1) and (1.2) that  

h -  h+ 

Iu  dOs--~'h_== Iu+d.3--~'h +. (I.7) 
o 0 

Here we impose  the  res t r ic t ion  {OM2/O$zl ~ oo. Here M z is the 

sum of the m e a n  values  of h(&1., 82) in the in tervals  -& l  -< 8r* -< 
--- 0, 0 -< &v:' --< O1" To get  mot ion  of the  water  a long the dry bed we 

put h+ = O in Eq. (1.7). Then 

h_ h -  

0 o 

From Gelder 's  i nequa l i t y  

h-  h-  

-s 
0 0 

so from (1.8) we have  

6" >/t/2 gh_ ~ cos a 0 (cos a0 ~ eonst > 0). (1.9) 

Let v 0 be such tha t  C -= 0; then  Eq. ( 'i.9) imp l i e s  that  h_ w. 0. 

Let h be such tha t  h -  =- 0; then  Eq. (1.8) imp l i e s  tha t  r 0 must be 

such that  C -= O. It is thus necessary and suff icient  to have  C -= 0 

in order to ge t h .  ~ o ; i f c >  o, t h e n h _ >  o. In fac t ,  h_ = 0  for 

some va lue  &2 = 13"z0; then (1.8) g ives  C(Oz0 ) = 0, which confl ic ts  

with the  condi t ion C > 0, which means  that  h .  > 0. 

Relation (1 .5)  with C -= 0 imp l i e s  some restr ic t ion on r0. For 

instance,  this  res t r ic t ion is obeyed if  

"to _ _ K ( t % ) ~ m , ~  (Oto~O),  "r'-2-~ ~ 0  (~to%0)(l.lO) 
p P 

near  $1 = O. Here the  rea l  number  o < 1, K(%) is bounded, and 910 = 

= - 9 1 .  
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The  stress at the  bot tom r o = 0 for o < 0 and 9i0 = -tO. An excep-  
t ion occurs when 0 -< o < 1. 

We thus obta in  a concept ion  of the f r i c t iona l  stress on the bot tom 
of an open flow for a sma l l  region around ~i = 0. 

2. COEFFICIENT OF FRICTIONAL RESISTANCE 

In deducing  the  res is tance coef f ic ien t  X i t  was assumed [8] tha t  the  

depth h >> k, in  which k is the ave rage  height  of the roughness pro- 
ject ions .  Here the formula  for X is extended to the case where h is 

near ly  zero, or with h = 0 at i so la ted  points. Such values  of h occur, 
for example ,  near  the front of a wave mov ing  along a dry bed.  For 
uniform mot ion  we have  [8] 

h 

It is unusual  to t a k e  the second correc t ion  a ,  as equal  to one for 
t r ans i en t - s t a t e  flow in open channels .  Then  in tegra t ion  of (1.1) sub- 

j ec t  to  (1.2) w i t h a  0 =0  a l o n g y ,  f r o m 0  t o h ,  gives  

Owh Ow~h Oh "to Oh Owh 
o--t- -}- ~ q- gh ~ - -  p ' 0-7- -t- ~ ~ 0. (3.1) 

Rep lacemen t  of %/P by Mw[w [8] and the  t ransformat ion  

w = w* ~--g-ff, h = h ' H ,  t = t* ~ ,  x = x * H  

with  omission of the  asterisk, gives  

3w 3w Oh Z, 
- g / - §  § 0 x - -  -h - I w l w '  

Oh Oh Ow 
-~ -  _k w ~-~x -}- h -~z  = 0 .  (3.2) 

Here a and /5 are universa l  tu rbu lence  constants. Formula (2.1) 

shows that  the  monotonic  inc rease  in  kp ceases for h ~ k. 

If k << h, as was assumed in  deducing kp and )% we modify  the 
formula  for kp in such a way tha t  i t  increases  mono ton ica l ly  as h de-  

creases; k is  also a l te red .  The  resuk ing  Xp and k are  t aken  as va l id  

for a l l  h (the ca l cu l a t ed  results are  in  good ag reemen t  with exper i -  

ment) .  As 

l n T  + ~ - t = 1 ~  1 -1- e ~ - l  h -  ke x " ~  
k 

and k<< h, we may  put 

h = l n [ l +  h ] 
in  T -I- a [ ~ -  I T ea~-t j  

neg lec t ing  k e x p ( 1  - 38)  as s m a l l  r e l a t i v e  to h. Then we see tha t  for 

uniform mot ion  we have  

~ p =  [ a / l n ( t - k h / D ) P .  

Also, X for t ransient  flow becomes  

It 

2z(olh~ sin ~0 - -  cos ~o Oh / Oz 1 
~ [ w ] w , w = "-ff- ,j udy .  (2 .2 )  o) 

o 

Here w is the water  speed. We assume tha t  (2.2) appl ies  for h 

smal l .  

3. ENTRY OF WATER INTO A DRY CHANNEL 

Consider a hor izonta l  channel  of rec tangular  cross-sect ion ex-  

tending  to  in f in i ty  in  both di rect ions  and with a thin par t i t ion  at  x = 

= 0; in i t i a l ly ,  there  is a water  depth H = constant  for x < 0, the  

'!" t 
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Fig. 2 
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water  being at rest, wi th  no water  on the  other side.  The  par t i t ion 

fails ins tantaneous ly  at t = 0, the  problem being to de t e rmine  the  

mot ion  for 311 x and subsequent t ( d a m - b r e a k i n g )  [1]. Let cq > 1 be 

such tha t  

h 

C ~ l W ~ - + l u 2 d y .  
o 

The  charac te r i s t i cs  of the system of (3.2) are  

t L 

The  sys tem of (3.2) is nonl inear .  In the  (x, t)  p lane  we dist inguish 

a region F bounded by the  l ines  

d x 
- - f r = - -  ~ .  = - ~, �9 (0) = 0 ,  

dt 

i )  ( 3 . 3 )  Ix* = 21n (t -+- H D  -1) q- 

d x  / dt  = w,,  x (0) = 6. (3.4) 

Here w. is the  v e l o c i t y  of the  water  at  the  point where the  free 

surface meets  the  bed (the speed of the  wave front). We denote  F 

for t >- 0 by F+ and specify the fo l lowing boundary condit ions at the 

t 

20~ 

tO~ 

/ 

TO /00 [50 

Fig. 3 

edges: w = 0 i n ( 3 . 3 ) ,  h = 0 i n ( 3 . 4 ) ,  a n d w  = 0  and h = h ( x )  o n t h e  

part 0 -< x -< 5, wi th  h(5) = 0. We have  to solve this problem for 

(3.2) in region F+.  
It is r ead i ly  shown tha t  Eqs. (3.3) and (3.4) are the character is t ics  

of (3.2) for the solut ion sat isfying the  condi t ions 

I) in (3.3) 

O h / O ~ < O  

2) in (3.4) 

I w I < oo, I Ow/Ot I < o~, I Ow/O~ i < o=. 

4. NUMERICAL METHOD AND RESULTS 

We perform the  t ransformat ions  x* = x + ct, t* = t in  (3.2) and 

omit  the  asterisk; subsequent ly  by (3.2) we understand the  transformed 

sys tem descr ibing the mot ion  of the  water  in  the  moving  coordinate  

system. In this new system, (3.3) becomes  x = 0 whi le  (3.4) becomes  

dx /d t  = w. + c, x(0) = 5. 
The  fo l lowing are  some features encountered in solving this  sys- 

t e m  by this  method.  
The  ca lcu la t ions  are performed for 0 < 5 << 1 (this means  that  the 

front is near ly  ver t i ca l ) .  
We consider  the  fol lowing i n i t i a l  forms for the  free surface: 

x 
(a) h ( x ) =  i - - - ~ -  (0 <x -~<  6), 

h ( x ) = [  ----6-ix ~(1-z)/z ( ~ % x % 5 ~  �9 (b> ~<~ < 1/" 
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In case (b) the  i n i t i a l  depth takes  in to  account  the s ingular i ty  of 
the  solut ion of (3.1) with Eq. (1.10) near  the  front of a continuous 
wave [43. The ca lcu la t ions  show that  there  is no substant ial  difference 
be tween  cases (a)  and (b). 

At any t i m e  t the  number N of points a long  the x axis is constant ,  
i . e . ,  the  step Ax i changes w k h  t. The  e l emen t s  of the moving  dif-  
fe rence  net in  the  (x, t)  p lane  and the  boundary curve  dx /d t  2- w. + 
+ c, x(0) = 8 are shown in Fig. 1. 

The  sys tem of (3.2) is approximated  as follows. The  der ivat ives  
are  

�9 i+l " ,i,~+l ,h~+l 

Ot ~ Ati+ 1 Ati+ , 2f~i+ t ' 

~ h i + l  ~ b i + l  
05 Vn+t - -  *n-1 
0z ~ 2Axe+ 1 

the  coeff ic ients  for the der iva t ives  on the  left  be ing t aken  on the  

previous layer;  the  r ight  part of the first equat ion  in  the  system is 

sign (w) �9 s ign ( w n  ~) �9 �9 
~' T w" ~--~ )~n ~ hn i [2Wn~Wn z+l -- (wn~)~]. 

This approx imat ion  for the  r ight  part is  used in order to  obtain a 
s table  d i f fe rence  system. 

The  system of (3.2) has a s ingular i ty  at  dx /d t  = w. + c, x(0) = 6, 

because  h = 0. In ca l cu la t ing  w/v_ 1~+~ _ wlv._,~+l ~L,i+IN in (3.2), the  coef-  

f ic ients  to  the der ivat ives  and the expression for k / h  are t aken  at  the  

point x~_ I = (N - 1) kx i ,  whi l e  the der iva t ives  are approximated  as 

i + 1  XN i+l " , I ,  ~+I m ~+I 
0,=$N --$~ --XN ~ v~ --VN-i 
Ot Ati§ 1 Ati+ 1 dxi+ i ' 

~+I ~h ~+I 

OX A a ~ i +  1 

This system of di f ference equat ions is solved by mat r ix  methods;  

the  system has not been e x a m i n e d  for s tabi l i ty ,  but the results show 

tha t  the system is stable.  

The following are some results. The  parameters  were t aken  as 

H = 0 . t t  m ,  r = 300 (0 ,.< t ~< r ) ;  k = 0.0028 m.  

This  cho ice  of parameters  is in  accordance  wi th  exper imen t  [4]. 
The  solution is obta ined in  dimensionless  form. Figure 2 shows h 

as a funct ion of x 0 at  t = T, with x 0 de te rmined  from x = 4.64x0. The  

curves in  Fig. 3 are 

o 

which cha rac t e r i ze  the  mot ion  of the  front; the  theo re t i ca l  and exper l -  
m e n t a l  curves of [43 are denoted by 1 and 2 respect ively ,  whi le  

curve  3 is from the  present ca lcu la t ion .  
I am indebted  to  O. F. Vas i l ' ev  for d i rec t ion  and assistance.  
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