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TRANSIENT FLOW IN AN OPEN DRY CHANNEL
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The case is that of planar flow on running water into a dry channel.
There are several papers on this [1~7], in which either no allowance
is made for resistance of the bed, or the form is appropriate tosteady-
state even flow, which is assumed to apply also to transient uneven
flow. The flow is essentially of transient type in the present (dam-
break) case,

Fig. 1

The problem is here considered numerically, with allowance for
the transient-state effects considered in [8].

1, APPROXIMATE FRICTIONAL STRESS AT THE BOTTOM NEAR THE
FRONT

We use the equations for a planar open flow [8]
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Here t is time, (x,y)is a cartesian coordinate system (x axis along
the fixed rectilinear contour), u and v are the components of the
velocity along x and y, pis pressure, and p and v are the density and
kinematic viscosity respectively [8].

Function 7 is found from additional considerations; in particular,
7 is a known function of t, %, and y in §1,

Conditions (1.2) are for integration of (1.1) with respect to y from
0 toh,

Here we assume that h(t, x) and u(t, %, y) may be discontinuous.
The problem then has to be considered by replacing the differential
equations by integral ones, which is done as follows,

Let x = £(t) be some line in the (x, t) plane, We perform the fol-
lowing transformations of the independent variables: 8, = x - (1),

8 =1, §;=y. Then the first equation of (1.1), with (1.2), may be
put as
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Here 1, is the stress on the bed, yis the contour of the region,
0= By, =8, —8 = 8, = 9, Let functions u and h be sufficiently

smooth everywhere except on the line $; = 0 in the plane of & and
9y, while on that line they have a discontinuity of the first kind.
Then differentiation of (1.3) with respect to 9, gives

0]
8, R T oM
A, I_B’: S (ghsmao——go"> a9 - % _8ﬂzl‘ (1.4)
8,

Here M, is the sum of the mean values of the integral A (9., &)
in the ranges — & = 8. =0, 0 = §, =< 9, We assume the restrictions
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Then Eq. (1.4) with & — 0 gives
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Here uy, by and u., h_ are the limiting values of u and h as &,
tends to zero from left and right respectively,
Similarly, we get from the second equations in (1.1) and (1,2) that
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Here we impose the restriction |dM,/99,]< «, Here M, is the
sum of the mean values of h(%yx, &) in the intervals - & = &, =
=0, 0= 8. = §. To get motion of the water along the dry bed we
put h4 =0 in Eq. (1.7). Then
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From Gelder's inequality
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so from (1.8) we have
> s gh ?cosa, (cos ay = const > 0). (1.9)

Let 1, be such that C = 0; then Eq. (1.9) implies that h_ =0,

Let h be such that h_ = 0; then Eq. (1,8) implies that 7, must be
such that C =0, It is thus necessary and sufficient to have C =0
in order to get h. = 0; if C> 0, then h. > 0, In fact, h- =0 for
some value $; = Sy then (1.8) gives C(9y,) = 0, which conflicts
with the condition C > 0, which means that h. > 0,

Relation (1.5) with C =0 implies some restriction on Ty. For
instance, this restriction is obeyed if

=K@ 00 Bu>0) %so (B10 < 0) (1.10)

near § =0, Here the real number ¢ < 1, K(%) is bounded, and &, =
= -9,
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The stress at the bottom 73 = 0 for 0 < 0 and 8§, = +0. An excep-
tion occurs when 0 =0 < 1,

We thus obtain a conception of the frictional stress on the botrom
of an open flow for a small region around 9; =90,

2, COEFFICIENT OF FRICTIONAL RESIST ANCE

In deducing the resistance coefficient A it was assumed [8] that the
depth h > k, in which k is the average height of the roughness pro-
jections, Here the formula for A is extended to the case where h is
nearly zero, or with h =0 at isolated points, Suchvaluesof h occur,
for example, near the front of a wave moving along a dry bed. For
uniform motion we have [8]

xp=[u/(1n%+ aB-—i)T. @.1)

Here o and 5 are universal turbulence constants. Formula (2.1)
shows that the monotonic increase in A, ceases forh < k.

If k < h, as was assumed in deducing }‘p and A, we modify the
formula for Ap in such a way that it increases monotonically as h de-
creases; A is also altered, The resulting )\P and A are taken as valid
for all h (the calculated results are in good agreement with experi-
ment), As
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and k « h, we may put
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neglecting kexp(l - aB) as small relative to h. Then we see that for
uniform motion we have

Ap=la/le{t+ k/D)P.
Also, A for transient flow becomes
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Here w is the water speed, We assume that (2.2) applies for h
small,
3. ENTRY OF WATER INTO A DRY CHANNEL

Consider a horizomal channel of rectangular cross-section ex-
tending to infinity in both directions and with a thin partition at x =
= 0; initially, there is a water depth H = constant for x < 0, the
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Fig. 2

water being at rest, with no water on the other side. The partition
fails instantaneously at t = 0, the problem being to determine the
motion for all x and subsequent t (dam-~breaking) [1]. Let oy > 1 be
such that
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It is unusual to take the second correction oy as equal to one for
transient-state flow in open channels. Then integration of (1.1) sub-
ject to (1.2) with o = 0 along y, from 0 toh, gives
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Replacement of 7,/p by Alw(w [8] and the transformation

w=u*YVgH, h=mH t=t*VH[g z=2*d
with omission of the asterisk, gives
dw dw ah A
St T = el
oh 8k ow .
—a—t+w—a‘x‘—,1»h'a—x=0. (3.2)

The characteristics of the system of (3,2) are
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The system of (3.2) is nonlinear. In the (x,t) plane we distinguish
a region I’ bounded by the lines
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Here w, is the velocity of the water at the point where the free
surface meets the bed (the speed of the wave front), We dencte T
fort = 0 by T'+ and specify the following boundary conditions at the
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edges: w =0 in (8.8), h = 0 in (3.4), and w = 0 and h = h(x) on the
part 0 = x = §, with h(§) = 0. We have to solve this problem for
(3.2) in region I'y.

It is readily shown that Eqs. (3.3) and (3.4) are the characteristics
of (3.2) for the solution satisfying the conditions

1) in (3.3)

Oh [0z <0
2)in (3.4)
|w]< oo,

4, NUMERICAL METHOD AND RESULTS

| 8wt | <L oo, | Bwfdx < oe.

We perform the transformations x* =x + ct, t* =t in (3.2) and
omit the asterisk; subsequently by (3.2) we understand the transformed
system describing the motion of the water in the moving coordinate
system. In this new system, (3.3) becomes x = 0 while (3.4) becomes
dx/dt = w. + ¢, x(0) = 4. )

The following are some features encountered in solving this sys-
tem by this method.

The calculations are performed for 0 < § < 1 (this means that the
front is nearly vertical). -

We consider the following initial forms for the free surface:

x
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In case (b) the initial depth takes into account the singularity of
the solution of (3,1) with Eq. (1.10) near the front of a continuous
wave [4]. The calculations show that there is no substantial difference
between cases (a) and (b).

At any time t the number N of points along the x axis is constant,
f.e,, the step Axj changes with t. The elements of the moving dif-
ference net in the (x,t) plane and the boundary curve dx/dt = w, +
+ ¢, x(0) = & are shown in Fig, 1.

The system of (3.2) is approximated as follows, The derivatives
are
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the coefficients for the derivatives on the left being taken on the
previous layer; the right part of the first equation in the system is

sign ; sign (w,}! I .
A : h(w) w? zknz % h,(:fn ) [zwnlwnﬁl - (wnI)zl'

This approximation for the right part is used in order to obtain a
stable difference system.

The system of (3.2) has a singulatity at dx/dt = w, + ¢, x(0) =6,

- % e SN ©-5 S S RS -
because h = 0. In calculating wyt =wyl w f\‘, in (3.2), the coef
ficients to the derivatives and the expression for A/h are taken at the

point Xﬁ\l-l =(N ~ 1) Ax4, while the derivatives are approximated as
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This system of difference equations is solved by matrix methods;
the system has not been examined for stability, but the results show
that the system is stable.

The following are some results, The parameters were taken as

H=044m, T=3000<:<<T); k= 0.0028 m,

This choice of parameters is in accordance with experiment [4].

The solution is obtained in dimensionless form, Figure 2 shows h
as a function of x, at t = T, with x, determined from x = 4,64%,. The
curves in Fig., 3 are

¢
z*=Sw*dt
0

which characterize the motion of the front; the theoretical and experi-
mental curves of [4] are denoted by 1 and 2 respectively, while
curve 3 is from the present calculation.

I am indebted to O, F, Vasil'ev for direction and assistance,
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